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1 Preliminaries

1.1 The Environment

We first describe the environment of sponsored search auctions that was in-
troduced in Edelman et al. (2007) and Varian (2007). For a given keyword,
let N = {1, 2, . . . , n} be the set of agents (advertisers) who are interested in
displaying their ads on the result page; and advertiser i’s maximum willing-
ness to pay for a click is denoted by vi. The number of ads that the search
engine can display per search is limited to k; and let cj denote the expected
number of clicks that the ad in position j receives per period of time. If
advertiser i buys position j for price pj per click, then his profit is simply
cj(vi − pj). Without loss of generality, advertisers and positions are labeled
in descending order, i.e., v1 > v2 > . . . > vn > 0 and c1 > c2 > . . . > ck > 0.

It is usually the case that the number of advertisers is much larger than
the number of positions since only limited number of ads can be displayed
per result page, we therefore assume n ≥ k + 2 throughout. To make the
notations simpler, we equate the number of positions to the number of ad-
vertisers by adding n − k fictitious positions with zero click-through-rate
each. That is, cj = 0 for all j = k + 1, . . . , n. We use N as the set of
positions for convenience.

An auction mechanism M in this setting specifies a pair of allocation π :
N → N and payment vector p ∈ Rn for each bid profile b = (b1, b2, . . . , bn)
submitted by the advertisers, where π(i) is the identity of the advertiser who
wins position i for price pi. Advertiser π(i)’s total payment Pi is cipi, so the
total revenue of the seller is then RM (b) =

∑n
i=1 Pi. The social welfare is

WM (b) =
∑n

i=1 civπ(i). An allocation is called efficient if it maximizes the
social welfare, i.e., π(i) = i for all i ≤ k.
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VCG mechanism allocates the first position to the advertiser with the
highest bid, and the second position to the advertiser with the second-highest
bid, and so on; and it charges each advertiser the externality he imposes on
others. In the game induced by VCG mechanism, it is optimal (dominant
strategy) for each advertiser to bid his true valuation. In this truthful equi-
librium, the allocation is efficient and the total payment for each position is
calculated as following:

P V CGk = ckvk+1

P V CGi = (ci − ci+1)vi+1 + P V CGi+1 , ∀i < k
(1)

We take the truthful VCG outcome as a benchmark to compare the
performance of other auction mechanisms in terms of the efficiency and the
seller’s revenue. Suppose a bid profile b in auction M generates an efficient
allocation, and the payment for each position satisfies the following:

PMk ≥ ckvk+1 (R1)

PMi ≥ (ci − ci+1)vi+1 + PMi+1, ∀i < k (R2)

Then, clearly, by induction, we get PMi ≥ P V CGi for all i ≤ k; and therefore
the seller’s revenue in M , RM (b), would be at least as high as the VCG
revenue, RV CG.

1.2 Generalized Second-Price Auction

In GSP, the advertiser with the highest bid wins the first position, but pays
the second-highest bid per click; the advertiser with the second-highest bid
wins the second position, but pays the third-highest bid per click; and so on.
Ties are broken uniformly at random. Given a bid profile (b1, b2, . . . , bn), the
payoff of advertiser π(i), who wins position i, is simply ci

〈
vπ(i) − bπ(i+1)

〉
,

where π(n+ 1) = n+ 1 and bn+1 = 0. We denote this game by ΓGSP .
A bid profile (b1, b2, . . . , bn) is a Nash equilibrium of ΓGSP , if:

ci
〈
vπ(i) − bπ(i+1)

〉
≥ cj

〈
vπ(i) − bπ(j+1)

〉
, ∀i, j ∈ N : j ≥ i

ci
〈
vπ(i) − bπ(i+1)

〉
≥ cj

〈
vπ(i) − bπ(j)

〉
, ∀i, j ∈ N : j < i

(2)

Indeed, if advertiser π(i) who wins position i wants to move down to position
j (j > i), he would bid just above the bid of advertiser π(j + 1) and pays
bπ(j+1). To avoid such deviation, the first condition in (2) is imposed. On
the other hand, to move up to position j (j < i), advertiser π(i) would have
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to bid at least the bid of advertiser π(j) and would pay bπ(j), hence the
second condition is imposed to avoid such deviation.

It turns out that GSP game has many Nash equilibria, involving the ones
with inefficient outcome, or low payment, or both. Edelman et al. (2007)
and Varian (2007) select a specific subset of Nash equilibria by imposing
further conditions.

Definition 1 (Edelman et al, 2007). A Nash equilibrium (b1, b2, . . . , bn) of
game ΓGSP is locally envy-free, if

ci
〈
vπ(i) − bπ(i+1)

〉
≥ ci−1

〈
vπ(i) − bπ(i)

〉
, ∀i ∈ N (3)

Edelman et al. (2007) shows that the outcome of any locally envy-free
equilibrium in ΓGSP is efficient, and the total revenue of the seller in it is at
least as high as in the truthful VCG outcome. However, in the next section,
we show an example that contradicts these results.

2 On the Locally Envy-free Condition

Example. Suppose there are 4 advertisers competing for 2 positions. Posi-
tion 1 gets 200 clicks per period, and Position 2 gets 100. Advertisers 1, 2,
3, and 4 have values 10, 5, 4, and 2 per click, respectively. One can easily
verify that a bidding profile b = (10, 1, 5, 2) constitutes a locally envy-free
equilibrium of the GSP game. However, this equilibrium doesn’t yield an ef-
ficient outcome as advertiser 3 wins position 2. Moreover, the total revenue
of the seller in this equilibrium is c1b3 + c2b4 = 1200 whereas VCG revenue
is 1300.

Let us first see what went wrong in their analysis. Let (b1, b2, . . . , bn) be
a locally envy-free equilibrium of ΓGSP . Then, by the equilibrium condition,
advertiser π(i) is not better of undercutting the bid of advertiser π(i + 1),
that is:

ci
〈
vπ(i) − bπ(i+1)

〉
≥ ci+1

〈
vπ(i) − bπ(i+2)

〉
Moreover, by the locally envy-freeness condition, advertiser π(i + 1) is not
better off by exchanging bids with advertiser π(i), that is:

ci+1

〈
vπ(i+1) − bπ(i+2)

〉
≥ ci

〈
vπ(i+1) − bπ(i+1)

〉
By adding up these two inequalities, we get

(ci − ci+1)
〈
vπ(i) − vπ(i+1)

〉
≥ 0, for all i ∈ N (4)
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Edelman et al. (2007) derives this inequality, and incorrectly concludes the
outcome to be efficient.

Lemma 1. In any locally envy-free equilibrium of game ΓGSP , advertiser
1, 2, . . . , k − 1 win position 1, 2, . . . , k − 1, respectively.

Proof. We will first show that, in any Nash equilibrium, all advertisers
1, 2, . . . , k − 1 win a position. Suppose, to the contrary, that there is an
equilibrium (b1, b2, . . . , bn) at which advertiser i doesn’t win any position
for some i ∈ {1, 2, . . . , k − 1}. Then there must exist at least two win-
ning advertisers, say advertiser q and r, who value a click lower than ad-
vertiser i does. Without loss of generality, let bq > br. Then we have
bq > br ≥ bπ(k) > bπ(k+1) ≥ bi. Now it is easy to see that advertiser i can
profitably increase his bid to a bid slightly higher than bπ(k) so that he gets
position k. Price he would pay is not higher than the price advertiser q paid
before his deviation, which must be not greater than vq. Therefore, this
deviation of advertiser i is profitable - a contradiction.

Next, let (b1, b2, . . . , bn) be a locally envy-free equilibrium. Then, by
inequality (4), we must have π(i) < π(i+ 1) for all i ≤ k. Since advertiser 1
wins a position, it must be the case that π(1) = 1. Repeating this argument
for advertisers 2, 3, . . . , k − 1 sequentially, we get the result as claimed.

We now understand that the locally envy-free condition alone is not
sufficient to get such results. What would be the minimalistic and realistic
assumption, in addition to locally envy-free condition, to get the desired
results?

Definition 2. An equilibrium bid in ΓGSP is discontent-free, if a losing
advertiser can not improve his payoff by getting the position and payment of
the advertiser who wins the last position. That is, for all i > k,

ckvπ(i) − PGSPk ≤ 0 (5)

Theorem 1. The outcome of any discontent-free and locally envy-free equi-
librium in ΓGSP is efficient, and the total revenue of the seller in it is at
least as high as in the truthful VCG outcome.

Proof. Take a discontent-free and locally envy-free equilibrium (b1, b2, . . . , bn).
By Lemma 1, advertiser i wins position i for all i ≤ k − 1. If advertiser k
doesn’t win a position, it must be pk ≥ vk. Then advertiser π(k) would be
better off lowering his bid. Hence the outcome of this equilibrium is efficient.

We complete the proof by showing that PGSPi ’s satisfy conditions (R1)
and (R2). Note that, after having the efficiency, discontent free condition is
equivalent to (R1), and locally envy-free condition is equivalent to (R2).
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3 Generalized Third-price Auctions

In GTP, the advertiser with the highest bid wins the first position, but pays
the third-highest bid per click; the advertiser with the second-highest bid
wins the second position, but pays the fourth-highest bid per click; and so
on. Ties are broken uniformly at random. Given a bid profile (t1, t2, . . . , tn),
the payoff of advertiser π(i), who wins position i, is simply ci

〈
vπ(i)−tπ(i+2)

〉
,

where tπ(n+1) = tπ(n+2) = 0. We denote this game by ΓGTP .

A bid profile (t1, t2, . . . , tn) constitutes a Nash equilibrium of ΓGTP , if

ci
〈
vπ(i) − tπ(i+2)

〉
≥ cj

〈
vπ(i) − tπ(j+2)

〉
, ∀i, j ∈ N : j ≥ i− 1

ci
〈
vπ(i) − tπ(i+2)

〉
≥ cj

〈
vπ(i) − tπ(j+1)

〉
, ∀i, j ∈ N : j < i− 1

(6)

Remember, in GSP, if advertiser π(i) who wins position i wants to move up
by one position, he would bid just above the bid of advertiser π(i− 1) and
pays bπ(i−1), the bid of the advertiser who is currently occupying position
i − 1. In contrast, in GTP, if advertiser π(i) who wins position i wants to
move up by one position, he still would bid just above the bid of advertiser
π(i − 1) and pays tπ(i+1), the price that advertiser π(i − 1) is currently
paying.

Lemma 2. The set of Nash equilibrium outcomes in ΓGTP coincides with
the set of locally envy-free equilibrium outcomes in ΓGSP .

Proof. Take a locally envy-free equilibrium (b1, b2, . . . , bn) in ΓGSP , and de-
termine the permutation π of players according to this bid profile. Note
that, by combining conditions (2) and (3), a bid profile (b1, b2, . . . , bn) is a
locally envy-free equilibrium in ΓGSP , if and only if:

ci
〈
vπ(i) − bπ(i+1)

〉
≥ cj

〈
vπ(i) − bπ(j+1)

〉
, ∀i, j ∈ N : j ≥ i− 1

ci
〈
vπ(i) − bπ(i+1)

〉
≥ cj

〈
vπ(i) − bπ(j)

〉
, ∀i, j ∈ N : j < i− 1

(7)

Next, construct a bid profile (t1, t2, . . . , tn) in ΓGTP as tπ(i) ≡ bπ(i−1) for all
i > 1 and choose any value greater than bπ(1) for tπ(1). Then the resulting

outcome of (t1, t2, . . . , tn) in ΓGTP is the same as the outcome of the locally
envy-free equilibrium (b1, b2, . . . , bn) in ΓGSP . To see that (t1, t2, . . . , tn)
constitutes a Nash equilibrium in ΓGTP , rewriting condition (7) in terms
of ti’s gives us the Nash equilibrium condition (6) in ΓGTP . Showing other
direction is similar, thus omitted.

Corollary 1. In any Nash equilibrium of game ΓGTP , advertiser 1, 2, . . . , k−
1 win position 1, 2, . . . , k − 1, respectively.

5



Proof. It follows from Lemma 1 and Lemma 2.

Definition 3. An equilibrium bid in ΓGTP is discontent-free, if a losing
advertiser can not improve his payoff by getting the position and payment of
the advertiser who wins the last position. That is, for all i > k,

ckvπ(i) − PGTPk ≤ 0 (8)

Theorem 2. The outcome of any discontent-free equilibrium in ΓGTP is
efficient, and the total revenue of the seller in it is at least as high as in the
truthful VCG outcome.

Proof. Take a discontent-free equilibrium (t1, t2, . . . , tn). By Corollary 1,
advertiser i wins position i for all i ≤ k − 1. If advertiser k doesn’t win
a position, it must be pk ≥ vk. Then advertiser π(k) would be better off
lowering his bid. Hence the outcome of this equilibrium is efficient.

We complete the proof by showing that PGTPi ’s satisfy conditions (R1)
and (R2). Note that, after having the efficiency, discontent free condition is
equivalent to (R1), and the Nash equilibrium condition for j = i− 1 in (6)
implies (R2).

4 Equilibrium Selection: Sensibility

Definition 4. An equilibrium bid in ΓGTP (or, ΓGSP ) is sensible, if losing
advertiser bids at least his own value.

Theorem 3. The outcome of any sensible equilibrium in ΓGTP is efficient,
and the total revenue of the seller in it is at least as high as in the truthful
VCG outcome.

Proof. First we prove the efficiency. Since, by Corollary 1, advertiser i wins
position i for all i ≤ k − 1, we just need to show that advertiser k wins
position k in any sensible equilibrium. Suppose, to the contrary, that there
exists a sensible equilibrium (t1, t2, . . . , tn) where advertiser k doesn’t win
a position. Then advertiser π(k) wins position k and pays tπ(k+2) which
implies that vπ(k) ≥ tπ(k+2). Since advertiser k is a losing advertiser, he bids
at least his own value. Thus, tπ(k) > tk ≥ vk > vπ(k) ≥ tπ(k+2). This implies
tk = tπ(k+1), but then advertiser k would be better off moving one position
up since vk > tπ(k+2) - a contradiction.

Now take a sensible equilibrium (t1, t2, . . . , tn) in ΓGTP . Then, as we
argued in the proof of Theorem 2, condition (R2) is satisfied. We now just
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need to show that condition (R1) is satisfied, that is PGTPk ≥ ckvk+1. Sup-
pose this is not true, i.e., tπ(k+2) < vk+1. Since, by sensibility, vk+1 ≤ tk+1,
advertiser k+ 1 is the first one to be excluded from the winners list. There-
fore, if advertiser k + 1 bids slightly above tk, he would get position k and
makes positive profit as his payment would still be tπ(k+2) - a contradiction.
This concludes the proof.

Theorem 4. The outcome of any sensible and locally envy-free equilibrium
in ΓGSP is efficient, and the total revenue of the seller in it is at least as
high as in the truthful VCG outcome.

Proof. Similar, thus omitted.

5 Impossibility and Possibility

Theorem 5. There is no auction mechanism M such that

1. WM (b) ≥W V CG

2. RM (b) ≥ RV CG

for any Nash equilibrium b of the game induced by M .

Proof. ... TO BE COMPLETED ...

Theorem 6. For any ε > 0, there is an auction mechanism Mε such that

1. WMε(b) ≥ (1− ε)W V CG

2. RMε(b) ≥ (1− ε)RV CG

for any Nash equilibrium b of the game induced by Mε.

Proof. The proof is constructive. For a given ε > 0, consider following
auction mechanism that we call Randomized Third-price Auction (RTP),
denoted by ΓRTP (ε). The payment in RTP is the same as in GTP, that is
if an advertiser wins a position he pays the bid of the advertiser ranked two
position below him. Moreover, the allocation in RTP is the same as in GTP
except the last position. That is, the highest bidder wins the first position,
and the second highest bidder wins the second position, and so on. However,
k-th highest bidder wins position k with probability 1 − ε, and (k + 1)-st
highest bidder wins position k with the remaining probability. For a bid
profile (t1, t2, . . . , tn), we denote by π(i) the identity of the advertiser who
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bids the i-th highest bid. Then the payoff of advertiser π(i) can be written
as γi

〈
vπ(i) − tπ(i+2)

〉
, where

γi =


ci, i 6= k, k + 1

(1− ε)ci, i = k

εci, i = k + 1

Game ΓRTP (ε) is therefore strategically equivalent to ΓGTP (γ) - a GTP
game with click-through-rates γ = (γ1, γ2, . . . , γn), in which k + 1 positions
have positive click-through-rate.

Now let (t1, t2, . . . , tn) be a Nash equilibrium in ΓGTP (γ). Then, by
Corollary 1, we have π(i) = i for all i ≤ k, i.e,

t1 > t2 > . . . > tk−1 > tk > tπ(k+1) > tπ(k+2) ≥ . . . ≥ tπ(n)
Consequently, we get

WGTP (γ)(t) =
k+1∑
i=1

γivπ(i) =
k∑
i=1

γivi + γk+1vπ(k+1)

≥
k∑
i=1

γivi ≥ (1− ε)
k∑
i=1

civi = (1− ε)W V CG

Next, consider following two cases: π(k+1) 6= k+1 and π(k+1) = k+1.
In the first case, it must be tπ(k+2) ≥ vk+1, otherwise advertiser k + 1 can

improve his payoff by outbidding advertiser π(k+1). This yields P
GTP (γ)
k =

γktπ(k+2) ≥ (1− ε)ckvk+1. In the second case, advertiser k+ 1 wins position
k+ 1 and he can not improve his payoff by outbidding advertiser k, that is,

γk+1vk+1 − P
GTP (γ)
k+1 ≥ γkvk+1 − P

GTP (γ)
k

which implies P
GTP (γ)
k ≥ (1− 2ε)ckvk+1. So, in both cases, we have

P
GTP (γ)
k ≥ (1− 2ε)ckvk+1 (9)

Moreover, for i < k, by the Nash equilibrium condition that advertiser
i+ 1 is not better off outbidding advertiser i, we get

P
GTP (γ)
i ≥ (1− 2ε)(ci − ci+1)vi+1 + P

GTP (γ)
i+1 (10)

Now using induction, we get P
GTP (γ)
i ≥ (1− 2ε)P V CGi for all i. Therefore,

RGTP (γ)(t) ≥ (1− 2ε)RV CG

To be precise, game ΓRTP (ε/2) satisfies the two conditions stated in the
theorem. This completes the proof.
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